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Abstract—This paper introduces a novel unsupervised spectral5
unmixing-based clustering method for high-spatial resolution hy-6
perspectral images (HSIs). In contrast to most clustering methods7
reported so far, which are applied on the spectral signature repre-8
sentations of the image pixels, the idea in the proposed method is9
to apply clustering on the abundance representations of the pixels.10
Specifically, the proposed method comprises two main processing11
stages namely: an unmixing stage (consisting of the endmember12
extraction and abundance estimation (AE) substages) and a clus-13
tering stage. In the former stage, suitable endmembers are selected14
first as the most representative pure pixels. Then, the spectral sig-15
nature of each pixel is expressed as a linear combination of the16
endmembers’ spectral signatures and the pixel itself is represented17
by the relative abundance vector, which is estimated via an efficient18
AE algorithm. The resulting abundance vectors associated with the19
HSI pixels are next fed to the clustering stage. Eventually, the pixels20
are grouped into clusters, in terms of their associated abundance21
vectors and not their spectral signatures. Experiments are per-22
formed on a synthetic HSI dataset as well as on three airborne

Q1
23

HSI datasets of high-spatial resolution containing vegetation and24
urban areas. The experimental results corroborate the effective-25
ness of the proposed method and demonstrate that it outperforms26
state-of-the-art clustering techniques in terms of overall accuracy,27
average accuracy, and kappa coefficient.

Q2
28

Index Terms—Abundance estimation (AE), clustering, endmem-29
ber extraction (EE), hyperspectral imagery (HSI), spectral unmix-30
ing (SU).31

I. INTRODUCTION32

HYPERSPECTRAL imaging has enabled applications and33

detailed mapping possibilities in a wide variety of Earth34

studies. In particular, airborne hyperspectral images (HSIs) of-35

fer high-spatial resolution with detailed spectral accuracy. This36

versatility enhances the identification, modeling, and detailed37

classification of various natural and man-made materials. HSIs38

are collected via hyperspectral sensors and are represented as39

data cubes consisting of numerous contiguous spectral bands of40

narrow bandwidths. A significant characteristic of HSIs, which41
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makes their processing more challenging, is the presence of 42

mixed pixels, which depict surface regions consisting of two or 43

more distinct materials. The data for each mixed pixel corre- 44

spond to the total reflectance of all the materials present within 45

the pixel in numerous spectral bands from the surface depicted 46

by the pixel, which form the spectral signature of the pixel. 47

The key objectives in HSI processing are: 1) the detection of 48

the constituent components of mixed HSI pixels as well as the 49

proportions in which they appear, which will allow the produc- 50

tion of abundance maps per material and 2) the identification 51

of spectrally homogeneous regions. The first objective is tack- 52

led via spectral unmixing (SU) and the second via the use of 53

clustering algorithms. 54

In this study, we focus on the problem of identifying spec- 55

trally homogeneous regions, via clustering (unsupervised) tech- 56

niques, which, in contrast to their supervised counterparts, they 57

do not require any externally labeled set of pixels. Most cluster- 58

ing techniques proposed in this field are applied on the spectral 59

signature representations of the pixels. In contrast, the key idea 60

of the proposed methodology is to apply clustering on the abun- 61

dance vector representations of the HSI pixels, since the latter 62

representation is likely to lead to more well-separated clusters. 63

To this end, SU is applied first on the spectral representations 64

of the pixels, in order to extract the corresponding abundance 65

vectors, and then, clustering is applied on the abundance vector 66

pixels representations. 67

SU [1]–[6] of HSIs has been widely applied to environmental 68

studies. It consists of two main substages, namely 1) endmem- 69

ber extraction and 2) abundance estimation (AE). EE [7]–[11] is 70

a challenging process since the aim is to mine the purest pixels 71

(endmembers) of each spectrally distinct material of a HSI. The 72

latter almost always consists of mixed pixels, which are also af- 73

fected by noise spectra. Ideally, each endmember ought to have 74

the maximum possible abundance of a single physical material 75

present in the HSI under study and minimum (close to zero) 76

abundance for the rest of the physical materials. Moreover, the 77

determination of the number of endmembers is critical since an 78

underestimated number may result in poor representation of the 79

mixed HSI pixels under study, whereas an overestimated num- 80

ber may comprise a lot of mixed signatures. Popular endmember 81

extraction algorithms (EEAs) include VCA [12], N-FINDR vari- 82

ants [13], and MVSA [14]. Other related algorithms are discussed 83

in [16]–[18]. 84

The aim of AE is the decomposition of the spectral signa- 85

tures of mixed pixels into a selection of spectral signatures 86
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corresponding to the reflectance of pure physical materials (end-87

members). The latter is usually extracted by the image itself via88

EE (however, in some cases they are selected from specific89

spectral libraries). AE results in a set of corresponding fractions90

(abundances), which indicate the proportion of each endmem-91

ber present in a given pixel. Clearly, the ultimate success of AE92

depends heavily on the appropriate selection of endmembers.93

Since only a small number of the available materials’ spectra94

are expected to be present in a HSI pixel (especially in high- res-95

olution HSIs), the abundance vectors are expected to be sparse.96

Clustering [19], [20] partitions a set of pixels from the input97

image into groups. Some of the most known clustering ap-98

proaches are the k-means [21], the Fuzzy C-Means (FCM) [22],99

the Possibilistic C-Means (PCM) [23] and their variants, e.g.,100

[24], [25]. The aforementioned algorithms are suitable for re-101

covering compact clusters and they use specific vectors, (called102

representatives) to represent the clusters that underlie in the103

current dataset. In contrast to these algorithms, that provide a104

single data clustering, in Hierarchical Agglomerative Clustering105

(HAC) [26], [27], the data are organized into an effective hier-106

archy of nested clusterings. HAC requires a metric in order to107

calculate the dissimilarity between pairs of pixels and a linkage108

so as to measure the dissimilarity between clusters.109

A. Related Work110

It should be mentioned that the literature on clustering tech-111

niques applied on HSIs is limited. In [28], a graph data struc-112

ture is generated to represent the tree crowns weighted with113

the Euclidean distance. A minimum spanning tree is generated114

using Kruskal’s algorithm and edges above a length threshold115

are removed to generate independent clusters. In [29], an unsu-116

pervised hierarchical cluster analysis to phytoplankton pigment117

data is applied with the aim of discriminating different phy-118

toplankton assemblages in open ocean environments. Several119

types of optical data vectors are used as input to HAC including120

objects consisting of reflectance values of hyperspectral data.121

Also, in [30], a new clustering algorithm, named Adaptive Pos-122

sibilistic C-Means (APCM), is applied on HSIs.123

In [31], a clustering procedure is proposed, which consists of124

three processes: 1) EE, 2) unmixing and 3) hardening process125

via the winner-takes-all approach, in order to produce recon-126

structed pixels spectra. In [32], the proposed work utilizes the127

Gauss Mixture Vector Quantization algorithm to learn the mix-128

ture analysis and explores the cluster analysis with correlation129

distance. In [33], SU is combined with k-means cluster analysis130

for accurate geological mapping. The data are first classified131

into two categories: hydrothermal alteration areas and unal-132

tered rocks. SU is applied to hydrothermal alteration areas and133

k-means clustering to unaltered rocks as two separate ap-134

proaches. In [34], the proposed work generates classification135

maps based on k-means clustering and Gradient Flow. SU is136

conducted using the Max-D algorithm to automatically find137

endmembers. It should be highlighted that, in all previous meth-138

ods, the unmixing and clustering processes are utilized as two139

separate steps, in the sense that their results are extracted inde-140

pendently from each other and are combined next.141

In this paper, a novel unsupervised SU-based clustering 142

method (SUBC) for HSIs is proposed. SUBC consists of two 143

processing stages namely: 1) SU, which consists of an EEA, 144

followed by a (sparse) AE algorithm and 2) a clustering algo- 145

rithm. The first process identifies suitable endmembers based 146

on the VCA algorithm [12]. Then, AE is applied on each image 147

pixel, in order to provide its abundance representation, using the 148

sparsity-promoting BiICE algorithm [35]. Finally, the recently 149

proposed APCM clustering algorithm [30] uses the abundance 150

representations of the pixels, in order to group them into clus- 151

ters. It should be noted that the abundance pixel representations 152

adopted in the proposed methodology ensures (in general) a 153

common sparsity pattern for pixels in the same cluster. To the 154

best of our knowledge, this is the first attempt of utilizing the 155

abundance representation of pixels generated by SU as input to 156

a clustering algorithm with the aim to enhance classification in 157

HSIs. 158

The proposed SUBC method is evaluated on a synthetic HSI 159

dataset as well as on three airborne HSI datasets of high-spatial 160

resolution (the agricultural area of Salinas Valley, CA, USA, the 161

land cover at Washington DC Mall, USA, and the urban area of 162

the Pavia center, Italy) and its performance is compared in terms 163

of overall accuracy (OA), average accuracy (AA) and kappa 164

coefficient with that of state-of-the-art clustering techniques. 165

The paper is organized as follows. Section II introduces the 166

proposed SUBC method. Section III demonstrates the results 167

obtained by the proposed method as well as comparisons with 168

state-of-the-art clustering algorithms. Conclusion and future re- 169

search directions are summarized in Section IV. 170

II. PROPOSED SUBC METHOD 171

In this section, we first present the motivation and contribu- 172

tion of this study and then we describe in detail the proposed 173

unmixing-based clustering algorithm. 174

A. Motivation and Contribution 175

In general, classification algorithms [36], [37] (both super- 176

vised and unsupervised) developed so far are applied directly on 177

the L-dimensional spectral band vectors of the pixels. However, 178

such (usually high dimensional) representations may contain a 179

lot of redundant information, which may cause pixels depicting 180

different areas to be not well separated from each other in the 181

L-dimensional spectral domain. Clearly, this renders the work 182

of the classification algorithms more difficult. Apart from the 183

above issue, most classification schemes used for HSI processing 184

do not focus on exploiting the available fine spectral resolution, 185

that is, they do not consider at all information within the pixel. A 186

further consequence of this is that such schemes do not exploit 187

the fact that each HSI pixel contains only a few of the materials 188

existing in the whole HSI (equivalently, the spectral signature of 189

each pixel is expected to result from the linear combination of 190

only a few endmember spectral signatures, which implies that 191

the corresponding abundance vectors will be sparse). 192

The approach that we adopt in this paper in order to leverage 193

the above issues is to employ sparsity-promoting SU techniques 194

in order to represent each pixel by its abundance vector (with 195
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Fig. 1. Conceptual illustration of the dimensionality reduction achieved, mov-
ing from the original band space (usually consisting of hundreds of spectral
bands) to the “less correlated” low-dimensional abundance space.

respect to a set of endmembers) and not by its spectral sig-196

nature. The rationale behind this choice is twofold. First, the197

dimension of the abundance vector space (which equals to the198

number of the endmembers depicted in the HSI under study) is199

usually much lower than the dimension of the spectral signature200

space (number of spectral bands) (see Fig. 1). Since the cor-201

responding original feature space (the space where each band202

defines an axis) is high dimensional, the Hughes phenomenon203

[38] (“curse” of dimensionality) appears. In light of this, the204

original high-dimensional space of the HSI is transformed to205

the dimensionally reduced space of abundance vectors [39].206

Second, assuming that the endmembers are pure pixels, the207

(sparse) abundance vectors are expected to form clusters, which208

are likely to lie in different subspaces in the abundance space. It209

is, thus, anticipated that different classes will form more easily210

distinguishable clusters in the abundance vectors space. Gener-211

ally speaking, adoption of the abundance representation is ex-212

pected to ease the work of the classification methods. However,213

we have to keep in mind that the abundance retrieval requires214

a very good estimation of the endmembers that have a physical215

meaning in order to work properly, which, in practice, is not216

straightforward.217

In the SU stage of the SUBC an EEA is first employed, which218

identifies appropriate endmembers of the image. Next, a sparse219

AE algorithm is used that is based on the endmembers extracted220

by the EEA, in order to produce the abundance fractions for221

each pixel, which in turn form the abundance vector of the222

pixel. These vectors of all pixels are fed to the second stage of223

the SUBC method, where a clustering algorithm groups pixels224

based on their abundance representations.225

An additional feature concerning the mapping to the abun-226

dance space that should be highlighted is that the number of227

clusters and the number of endmembers are (in general) dif-228

ferent. A cluster formed according to the abundances usually229

corresponds to a region where a single (or a few) endmembers230

have high proportion, whereas all other endmembers have low231

proportions. However, it can also correspond to the mixture of232

several endmembers of varied proportions. The block diagram233

of SUBC is depicted in Fig. 2.234

B. Spectral Unmixing235

1) Endmember Extraction: Aiming at detecting suitable236

endmembers, we utilize the VCA algorithm [12], which takes237

Fig. 2. Block diagram of SUBC.

as input the spectral signatures of the pixels, as can be seen in 238

Fig. 2. Each pixel can be viewed as a vector in an L-dimensional 239

Euclidean space, where each spectral band is assigned to one 240

axis of the space. Based on the aforesaid data points, the 241

VCA algorithm returns a prespecified number of endmembers 242

via iteratively projecting data onto a direction orthogonal to 243

the subspace spanned by the endmembers already determined. 244

The new endmember signature corresponds to the extreme 245

of the projection. The algorithm iterates until the number of 246

endmembers is exhausted [12]. Then, SUBC continues in esti- 247

mating the abundance fractions of each endmember via AE. 248

2) Abundance Estimation: The selection of appropriate end- 249

members is crucial so as to correctly estimate the abundance 250

fractions. Usually, the spectral signature of the pixel, denoted 251

by y, is assumed to follow the Linear Mixing Model [40] ac- 252

cording to which it can be expressed as a linear combination of 253

its endmembers’ spectra as follows: 254

y = Φx + n (1)

where Φ = [ϕ1 , ϕ2 , ..., ϕp ] ∈ �L×p
+ , L � p, is the mixing ma- 255

trix comprising the endmembers’ spectra (L-dimensional vec- 256

tors φi, i = 1, 2, ..., p), x is a p × 1 vector consisting of the 257

corresponding abundance fractions, named abundance vector, 258

and n is an L × 1 additive noise vector, which is assumed to be 259

a zero-mean Gaussian distributed random vector with indepen- 260

dent and identically distributed elements. 261

Due to the physical constraints of the unmixing problem, the 262

abundance fractions for each pixel should satisfy the following 263

two constraints: 264

xi ≥ 0, i = 1, 2, ..., N,
N∑

i=1

xi = 1 (2)

that is, the abundances should be nonnegative and they must 265

sum to 1. Furthermore, the abundance vector is expected to be 266

sparse, i.e., only a few of its elements will be nonzero, since the 267
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Fig. 3. (a) Class of the HSI containing two subclasses; (b) representation of
pixels in the original space; (c) representation of abundance vectors x = x1 , x2 ;
and (d) clustering result emerged from SUBC.

area depicted by a single pixel is likely to embed only a small268

fraction of the different materials encountered in the whole HSI.269

In this study, the abundance vector for each pixel is estimated270

via a variational Bayes algorithm called BiICE [35] (see Fig. 2)271

that imposes sparsity on the abundance vector and is based on272

an appropriately defined hierarchical Bayesian model. In algo-273

rithmic form, the abundance vector can be obtained as follows:274

x = BiICE(Φ, y). (3)

BiICE is computationally efficient, provides sparse solutions275

without requiring the fine-tuning of any parameters, and con-276

verges fast to accurate values even for highly correlated data.277

The determined abundance vectors x are further used for the278

representation of their associated pixels at the clustering pro-279

cess.280

In order to unravel the advantages of using the abundance281

representation of the pixels instead of the traditional band rep-282

resentation, we consider the following simplified case. For283

illustration purposes, we form an RGB image selecting three284

appropriate bands from a small area of one of the HSIs con-285

sidered in Section III-B. The considered area [see Fig. 3(a)] is286

a class consisting of two subclasses. The representation of the287

pixels in the original space is depicted in red color in Fig. 3(b).288

Assuming two endmembers (one from each subclass), Fig. 3(c)289

depicts the abundance vectors stemmed from BiICE in blue290

color. Note that, due to the imposed sparsity, almost all pixels291

are concentrated around the two axes. Finally, Fig. 3(d) depicts292

the classification map produced by SUBC.293

It should be highlighted that the pixels in the original space294

formulate one compact cloud with a few outliers and, thus, it295

is difficult to be naturally divided into two separate groups.296

On the contrary, the abundance vectors formulate two compact297

clouds tangent to the axes, which are highly distinguished. This298

is the advantage that characterizes the representation of the pix-299

els using their abundance vectors and eases SUBC to correctly300

identify the two subclasses, via its second stage. It should also301

be reminded here that the abundance vectors are characterized302

by sparsity (i.e., the existence of zeros in vectors x), which 303

promotes data distinctions. 304

C. Clustering 305

The clustering stage, which is applied on the abundance rep- 306

resentations of the HSI pixels under study, employs the APCM 307

algorithm [30] (see Fig. 2). Let X ={xi ∈ �p , i = 1, ..., N} 308

be a set of N p-dimensional data vectors to be clustered and 309

Θ = {θj ∈ �p , j = 1, ...,m} be a set of m vectors (called rep- 310

resentatives) that will be used for the representation of the clus- 311

ters formed by the points in X. Let U = [uij ], i = 1, ..., N, j = 312

1, ...,m be an N × m matrix whose (i, j) entry stands for the so- 313

called degree of compatibility of xi with the jth cluster denoted 314

by Cj and represented by the vector θj . The APCM algorithm 315

emerges from the optimization of the cost function of the origi- 316

nal PCM described as follows: 317

JPCM (Θ, U) =
m∑

j=1

[
N∑

i=1

uij ||xi − θj ||2

+ γj

N∑

i=1

(uij ln uij − uij )]. (4)

In contrast to the classical PCM, where γj
′s remain constant 318

during the execution of the algorithm, in APCM γj
′s are adapted 319

at each iteration through the adaptation of the corresponding 320

ηj
′s. This is achieved by setting γj = η̂

α ηj and adapting ηj 321

(which is a measure of the mean absolute deviation of the current 322

form of cluster Cj ) at each iteration of the algorithm. Note that 323

ηj
′s and α are constant quantities (for more details see [30]). 324

The output of the algorithm is a classification map consisting 325

of clusters formed based on the abundances produced in SU. The 326

clusters that are formed usually correspond to regions where 327

a few abundances have high values of fractions, whereas the 328

remaining ones exhibit low values (that is, they are aggregated 329

around certain subspaces in the abundance space). 330

III. EXPERIMENTAL RESULTS AND DISCUSSION 331

SUBC has been experimentally evaluated in four case studies: 332

a synthetic and three real airborne HSI datasets of high-spatial 333

resolution. The synthetic HSI dataset has been generated with 334

various values of additive noise in order to test the sensitivity 335

of the proposed method under different noise levels. The first 336

airborne HSI dataset represents a challenging area of various 337

plant species on an agricultural area, where discrimination be- 338

tween the species is impeded by numerous factors such as the 339

similar spectral signatures of the pixels as well as the absence of 340

reference spectra. The second airborne HSI dataset represents 341

a land cover of mixed vegetation and urban materials whose 342

spectral signatures patterns vary. The third airborne HSI dataset 343

represents a mainly urban area, where the spectral signatures of 344

the materials present are not characterized by specific patterns. 345

A. Synthetic HSI Dataset 346

The experimental evaluation of SUBC has been conducted on 347

a 100 × 100 synthetic HSI dataset consisting of five different 348
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Fig. 4. (a) Reference map of synthetic HSI dataset and (b) 100th band added
with noise at 20 dB.

Fig. 5. Estimated abundance maps for two endmembers (a) pyroxenes and
(b) carbonates extracted from synthetic HSI via BiICE. Abundance values range
from 0 (blue) to 1 (red).

regions artificially generated. The spectral signatures have been349

obtained by the U.S. Geological Survey Spectral Library [41].350

The data cube contains areas with mineral signatures of five351

general mineral classes: 1) olivines; 2) pyroxenes; 3) sulfates;352

4) oxides; and 5) carbonates. The HSI under study comprises 109353

spectral bands. For the generation of the synthetic hyperspectral354

data cube, seven endmembers have been randomly selected and355

for each mineral class seven pure pixels have been assigned.356

It should be highlighted that for each mineral class more than357

one endmembers have been randomly assigned. Each one of the358

five regions consists of a linear combination of different ran-359

domly selected different endmembers contaminated by additive360

Gaussian zero mean noise.361

Fig. 4(a) depicts the reference map, while Fig. 4(b) shows the362

100th band of the synthetic HSI contaminated by 20-dB addi-363

tive noise. It should be noted that noise is added in all bands of364

the synthetic HSI dataset and experiments have been conducted365

with different SNRs in the range of 20–40 dB. Fig. 5 illustrates366

abundance maps obtained from BiICE for two endmembers 1)367

pyroxenes and 2) carbonates extracted from the synthetic HSI368

under study. In Fig. 6, SUBC is compared with state-of-the-369

art clustering algorithms namely k-means, complete-link HAC,370

FCM, and APCM. It should be highlighted that all these al-371

gorithms are applied on the spectral signatures of the pixels,372

whereas the clustering procedure in SUBC is applied on the373

abundance representations of the pixels (due to the philosophy374

of the method). As shown in Fig. 6, classes 1, 3, and 4 are cor-375

rectly identified by all tested algorithms, while the superiority376

of the proposed SUBC algorithm is clearly demonstrated in the377

identification of classes 2 and 5.378

Table I contains the results obtained by k-means, HAC, FCM,379

APCM, and SUBC in terms of OA and kappa coefficient based380

Fig. 6. Clustering results emerged from: (a) k-means; (b) HAC; (c) FCM;
(d) APCM; and (e) SUBC on the synthetic HSI under study.

TABLE I
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON SYNTHETIC

HSI DATASET IN TERMS OF OA AND Kappa Coefficient

OA(%) kappa

k-means 86.95 0.76
HAC 93.51 0.87
FCM 90.01 0.89
APCM 97.73 0.90
SUBC 99.28 092

TABLE II
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON SYNTHETIC

HSI DATASET IN TERMS OF AA FOR EACH CLASS

Class k-means HAC FCM APCM SUBC

1 99.76 92.51 99.70 99.72 99.78
2 77.52 93.21 77.20 97.31 98.66
3 99.24 82.24 99.30 99.25 99.26
4 75.03 99.69 85.87 99.53 99.50
5 83.20 99.90 87.98 92.84 99.20

on the obtained confusion matrix for 20-dB SNR [33]. Table II 381

demonstrates the results in terms of AA (fraction of true positives 382

and true negatives) for each class. We observe that SUBC out- 383

performs all existing clustering techniques and offers an almost 384

100% OA and AA. It should be noted here that similar results 385

have also beenobtained for all other values of SNR tested in the 386

range 20–40 dB. 387

B. Airborne HSI Datasets 388

SUBC has been also experimentally evaluated on the HSI 389

airborne dataset of the Salinas Valley, CA, USA [42], which 390

constitutes an arduous clustering scenario. Salinas HSI has been 391

collected by the Airborne Visible Infra-Red Imaging Spec- 392

trometer (AVIRIS) sensor over an agricultural area of Salinas 393

Valley, California. The AVIRIS sensor, developed by NASA’s 394

Jet Propulsion Laboratory [43], generates calibrated radiance 395
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Fig. 7. (a) First PCA band; (b) 117th band of Salinas Valley; and (c) masked
reference map [42].

images in 224 contiguous spectral bands with wavelengths from396

400 to 2500 nm. Moreover, it is characterized by high-spatial397

resolution of 3.7-m pixels. The number of bands is reduced to398

204 by removing 20 water absorption bands. Salinas Valley HSI399

consists of vegetables and vineyard fields. Its masked reference400

classification map comprises eight classes: corn, two types of401

broccoli, four types of lettuce and grapes [42]. Fig. 7 depicts:402

(a) first PCA band; (b) 117th band; and (c) masked reference403

map of a 150 × 150 subimage of the Salinas Valley HSI.404

Ideally, one would have a digital spectral library of refer-405

ence spectra of the mapped plant species. However, such a406

publicly available library does not exist for the specific plant407

species. In addition, it is not known how many spectra would408

be required to represent the changing spectral signatures, as409

a function of the growing season. This unavoidably leads to410

the selection of the endmembers from the image itself. Doing411

so, Fig. 8(a)–(d) depict estimated abundance maps stemmed412

from BiICE for four endmembers extracted from Salinas Val-413

ley HSI. Fig. 8(a) and (b) correspond to two types of broccoli,414

Fig. 8(c) to one type of grapes and Fig. 8(d) to a (most probably)415

construction.416

Aiming at a quantitative evaluation, SUBC is compared417

against k-means, HAC, FCM, and APCM in terms of OA and AA418

computed by the obtained confusion matrix as can be seen in Ta-419

bles III and IV, respectively. We see from Tables III and IV that420

SUBC achieves OA, kappa, and AA values which are higher than421

that of the other state-of-the-art clustering algorithms. Fig. 9 il-422

lustrates clustering results emerged from: (a) k-means; (b) HAC;423

(c) FCM; (d) APCM; and (c) SUBC on the Salinas HSI dataset.424

It should be mentioned that the results obtained by APCM and425

SUBC demonstrate the correct identification of all classes and426

subclasses as can be seen by examining the first PCA band in427

Fig 7(a).428

Fig. 8. Estimated abundance maps for four endmembers extracted from
Salinas Valley HSI via BiICE. Abundance values range from 0 (blue) to 1
(red).

TABLE III
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON SALINAS

HSI DATASET IN TERMS OF OA AND Kappa Coefficient

OA(%) kappa

k-means 72.67 0.70
HAC 87.07 0.75
FCM 82.46 0.70
APCM 91.34 0.78
SUBC 93.04 0.80

TABLE IV
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON SALINAS HSI

DATASET IN TERMS OF AA FOR EACH CLASS

Class k-means HAC FCM APCM SUBC

Grapes 73.67 94.27 74.92 87.92 94.77
Broccoli A 74.43 73.82 92.83 92.79 93.49
Broccoli B 73.56 73.93 90.12 90.82 91.52
Lettuce A 72.43 89.38 72.81 92.27 93.37
Lettuce B 73.21 91.59 70.62 91.39 92.36
Lettuce C 70.23 92.72 91.29 92.12 92.79
Lettuce D 71.54 93.91 92.46 93.24 93.52
Corn 72.29 86.94 74.63 90.17 92.50

SUBC has also been quantitatively evaluated on the HSI air- 429

borne dataset of the Pavia Center [42]. The image has been 430

acquired by the reflective optics system imaging spectrometer 431

sensor over an urban area of the city center. The flight was 432

operated by the German Aerospace Agency under the HySens 433

project managed by the German Aerospace Center (DLR). The 434

original data consist of 115 spectral bands (with the spectral 435

range from 0.43 to 0.86 μm) and has a high-spatial resolution of 436

1.3 m. However, noisy bands were previously removed leading 437

to a total of 102 bands. Four thematic classes are present in the 438
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Fig. 9. Clustering results emerged from: (a) k-means; (b) HAC; (c) FCM;
(d) APCM; and (e) SUBC on the Salinas HSI.

Fig. 10. (a) First PCA band; (b) 80th band of Pavia center; and (c) masked
reference map [42] (1-yellow, 2-light blue, 3-dark blue, and 4-brown).

scene: 1) asphalt; 2) meadows; 3) trees; and 4) shadows, accord-439

ing to the reference classification map provided by [42]. Fig. 10440

depicts: (a) first PCA band; (b) 80th band; and 3) masked refer-441

ence map of a 300 × 177 subimage of the Pavia center HSI [42].442

Fig. 11(a) and (b) depicts estimated abundance maps stemmed443

from BiICE for two endmembers: (a) shadow and (b) manmade444

material.445

In the scope of a quantitative evaluation, SUBC is compared446

against k-means, HAC, FCM, and APCM in terms of the OA and447

kappa coefficient computed by the obtained confusion matrix448

Fig. 11. Estimated abundance maps for two endmembers (a) shadow,
(b) manmade material extracted from Pavia center HSI via BiICE. Abundance
values range from 0 (blue) to 1 (red).

TABLE V
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON PAVIA HSI

DATASET IN TERMS OF OA AND Kappa Coefficient

OA(%) Kappa

k-means 93.26 0.80
HAC 37.03 0.71
FCM 92.46 0.78
APCM 93.38 0.79
SUBC 96.30 0.83

TABLE VI
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON PAVIA HSI

DATASET IN TERMS OF AA FOR EACH CLASS

Class k-means HAC FCM APCM SUBC

Asphalt 94.28 25.93 94.90 95.01 97.31
Meadows 90.62 16.72 92.61 91.68 96.71
Trees 92.25 21.09 86.51 90.47 94.37
Shadows 95.89 84.39 95.82 96.36 96.81

as can be seen in Table V and in terms of the AA as can be 449

seen in Table VI, while the clustering results of all algorithms 450

are shown in Fig. 12. Again, SUBC provides the best clustering 451

performance as witnessed by its OA, kappa, and AA values, 452

which are the highest among all its competitors. 453

Finally, SUBC has been qualitatively evaluated on the HSI 454

airborne dataset of the Washington DC mall [44]. The image 455

has been acquired by the airborne mounted Hyperspectral Dig- 456

ital Imagery Collection Experiment sensor. The sensor system 457

used in this case measured pixel response in 210 bands in the 458

0.4–2.4 μm region of the visible and infrared spectrum. Bands 459

in the 0.9–1.4 μm region, where the atmosphere is opaque, have 460

been omitted from the dataset leaving 191 bands. Moreover, 461

the dataset exhibits high-spatial resolution (2.8 m). Five the- 462

matic land cover classes are present in the scene: 1) roof; 2) Q3463

grass; 3) trees; 4) water; and 5) asphalt road, according to the 464
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Fig. 12. Clustering results emerged from: (a) k-means, (b) HAC, (c) FCM,
(d) APCM and (e) SUBC on the Pavia center HSI.

Fig. 13. (a) First PCA band; (b) 100th band of Washington DC; and
(c) reference map [44].

classification map provided by [49] and used here as a reference465

map.466

Fig. 13 depicts: (a) first PCA band; (b) 100th band; and (c)467

reference map of a 100 × 100 subimage of the Washington DC468

mall HSI [44]. It should be noticed that the reference map is469

provided only for qualitative visualization assessment and it is470

not accurate for a thorough quantitative assessment. Fig. 14(a)471

Fig. 14. Estimated abundance maps for two endmembers: (a) manmade ma-
terial and(b) (most probably) soil/grass of class 1 extracted from Washington
DC HSI via BiICE. Abundance values range from 0 (blue) to 1 (red).

Fig. 15. Clustering results emerged from: (a) k-means; (b) HAC; (c) FCM;
(d) APCM; and (e) SUBC on the Washington DC HSI.

and (b) depicts estimated abundance maps stemmed from Bi- 472

ICE for two endmembers: 1) manmade material and 2) (most 473

probably) soil/grass of class 1. Fig. 15 illustrates clustering re- 474

sults emerged from: (a) k-means; (b) HAC; (c) FCM; (d) APCM; 475

and (e) SUBC on the Washington DC HSI dataset. It should be 476

highlighted that, apart from SUBC, all other algorithms falsely 477

classify water and asphalt road pixels to one class. On the other 478

hand, SUBC correctly distinguishes pixels that belong to the 479

water class from all other pixels that belong to the remaining 480

classes. 481

As it has been highlighted throughout the paper, the key idea 482

of the proposed method is to perform unmixing at its first stage, 483

in order to take the abundance representations of the pixels 484

and then, at the second stage, to perform clustering based on 485

the pixels abundance vector representations. Clearly, one could 486

choose any unmixing method in the first stage and any clustering 487

method in the second stage of the algorithm. In order to justify 488

the choice of BiICE in the first stage, we compare it against 489

two AE algorithms: 1) a quadratic programming (QP) technique 490

[45], which does not exploit sparsity and 2) the sparse unmix- 491

ing by variable splitting and augmented Lagrangian (SUnSAL) 492

algorithm [46], which, as BiICE, imposes sparsity. That is, we 493

substitute BiICE with QP and SUnSAL at the first stage of the 494

proposed method. Leaned on Table VII, which depicts the OA 495



IEE
E P

ro
of

MYLONA et al.: SPECTRAL UNMIXING-BASED CLUSTERING OF HIGH-SPATIAL RESOLUTION HYPERSPECTRAL IMAGERY 9

TABLE VII
COMPARATIVE RESULTS OF SU ALGORITHMS ON HSI

DATASETS IN TERMS OF OA

Synthetic Salinas Pavia

QP 83.67 74.32 71.20
SUnSAL 97.50 82.71 87.52
BiICE 99.28 93.04 96.30

of the three cases, the QP algorithm attains the worst perfor-496

mance (since it does not take into account that by the nature of497

the problem, the abundance vectors exhibit sparsity), whereas498

SUnSAL exhibits significantly improved performance compared499

to QP, yet inferior, compared to BiICE, especially for real data.500

Moreover, SUnSAL comes at the additional expense of manually501

fine-tuning nontrivial parameters, such as a sparsity promoting502

parameter λ.503

The choice of APCM in the second stage of the algorithm is504

justified mainly by the fact that it is able to estimate automati-505

cally the underlying number of clusters in the dataset. Moreover,506

focusing on the first four lines of Tables I, III, and IV, the OA507

of APCM is significantly higher from all other state of the art508

clustering methods (note that all these algorithms are applied on509

the same dataset, i.e., the spectral signature representations of510

the HSI pixels).511

IV. CONCLUSION AND FUTURE DIRECTIONS512

The key challenge of the proposed method (SUBC) is the iden-513

tification of spatially homogeneous regions comprising different514

materials. The method consists of two main stages (unmixing515

and clustering) and generates three significant (by)products,516

namely: 1) endmembers; 2) abundance vectors (abundance517

maps); and 3) clusters (classification maps). The key feature of518

SUBC is the utilization of the abundance representations of the519

HSI pixels (as they result from the unmixing stage) in the cluster-520

ing stage. The advantage of using the abundance representation521

instead of the basic spectral representation of the pixels is that522

the former, in contrast to the latter, provides subpixel level infor-523

mation, which in turn favors more detailed classification maps.524

Moreover, the abundance representation is likely to give rise to525

more well-discriminated clusters that live on subspaces of the526

abundance space, due to the fact that only a few materials are527

expected to contribute to the formation of a HSI pixel (sparsity528

issue). As a consequence, subspace clustering algorithms could529

also be considered as an alternative in the final stage of the algo-530

rithm, since the abundance representations are likely to lead to531

clusters that live to subspaces of the abundance space. SUBC is532

unsupervised and does not require class information knowledge533

of the dataset under study. Moreover, it is image independent,534

it alleviates the “curse of dimensionality” issue and enhances535

localization and accuracy since it operates in the subpixel level536

of information. However, it is noted again that the correct iden-537

tification of the endmembers number and their correspondence538

to physical objects/materials is undoubtedly the most critical539

step for successful SU and, as a consequence, for the clustering 540

processes. 541

Experimental results show that SUBC compares favorably to 542

other related methods. This gives us confidence to claim that the 543

performance of the proposed method remains consistent with 544

high-spatial resolution airborne data. It is capable of identifying 545

compact regions and spectral regions that lack training data. 546

In terms of future directions, the full potential of this al- 547

gorithm will be investigated with additional hyperspectral ac- 548

quisitions of higher mixture complexity. In addition, this study 549

could be reinforced and expanded in the case of existing and 550

future satellite hypespectral data imagery of lower spatial res- 551

olutions where increased complexity issues for the tasks of 1) 552

endmember identification; 2) resolving shadowing effects; and 553

3) facing oblique viewing and illumination angles arise. More- 554

over, subspace clustering algorithms could be utilized, since as 555

we discussed earlier, they suit nicely in the nature of the problem 556

in the abundance space. 557
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Abstract—This paper introduces a novel unsupervised spectral5
unmixing-based clustering method for high-spatial resolution hy-6
perspectral images (HSIs). In contrast to most clustering methods7
reported so far, which are applied on the spectral signature repre-8
sentations of the image pixels, the idea in the proposed method is9
to apply clustering on the abundance representations of the pixels.10
Specifically, the proposed method comprises two main processing11
stages namely: an unmixing stage (consisting of the endmember12
extraction and abundance estimation (AE) substages) and a clus-13
tering stage. In the former stage, suitable endmembers are selected14
first as the most representative pure pixels. Then, the spectral sig-15
nature of each pixel is expressed as a linear combination of the16
endmembers’ spectral signatures and the pixel itself is represented17
by the relative abundance vector, which is estimated via an efficient18
AE algorithm. The resulting abundance vectors associated with the19
HSI pixels are next fed to the clustering stage. Eventually, the pixels20
are grouped into clusters, in terms of their associated abundance21
vectors and not their spectral signatures. Experiments are per-22
formed on a synthetic HSI dataset as well as on three airborne

Q1
23

HSI datasets of high-spatial resolution containing vegetation and24
urban areas. The experimental results corroborate the effective-25
ness of the proposed method and demonstrate that it outperforms26
state-of-the-art clustering techniques in terms of overall accuracy,27
average accuracy, and kappa coefficient.

Q2
28

Index Terms—Abundance estimation (AE), clustering, endmem-29
ber extraction (EE), hyperspectral imagery (HSI), spectral unmix-30
ing (SU).31

I. INTRODUCTION32

HYPERSPECTRAL imaging has enabled applications and33

detailed mapping possibilities in a wide variety of Earth34

studies. In particular, airborne hyperspectral images (HSIs) of-35

fer high-spatial resolution with detailed spectral accuracy. This36

versatility enhances the identification, modeling, and detailed37

classification of various natural and man-made materials. HSIs38

are collected via hyperspectral sensors and are represented as39

data cubes consisting of numerous contiguous spectral bands of40

narrow bandwidths. A significant characteristic of HSIs, which41
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makes their processing more challenging, is the presence of 42

mixed pixels, which depict surface regions consisting of two or 43

more distinct materials. The data for each mixed pixel corre- 44

spond to the total reflectance of all the materials present within 45

the pixel in numerous spectral bands from the surface depicted 46

by the pixel, which form the spectral signature of the pixel. 47

The key objectives in HSI processing are: 1) the detection of 48

the constituent components of mixed HSI pixels as well as the 49

proportions in which they appear, which will allow the produc- 50

tion of abundance maps per material and 2) the identification 51

of spectrally homogeneous regions. The first objective is tack- 52

led via spectral unmixing (SU) and the second via the use of 53

clustering algorithms. 54

In this study, we focus on the problem of identifying spec- 55

trally homogeneous regions, via clustering (unsupervised) tech- 56

niques, which, in contrast to their supervised counterparts, they 57

do not require any externally labeled set of pixels. Most cluster- 58

ing techniques proposed in this field are applied on the spectral 59

signature representations of the pixels. In contrast, the key idea 60

of the proposed methodology is to apply clustering on the abun- 61

dance vector representations of the HSI pixels, since the latter 62

representation is likely to lead to more well-separated clusters. 63

To this end, SU is applied first on the spectral representations 64

of the pixels, in order to extract the corresponding abundance 65

vectors, and then, clustering is applied on the abundance vector 66

pixels representations. 67

SU [1]–[6] of HSIs has been widely applied to environmental 68

studies. It consists of two main substages, namely 1) endmem- 69

ber extraction and 2) abundance estimation (AE). EE [7]–[11] is 70

a challenging process since the aim is to mine the purest pixels 71

(endmembers) of each spectrally distinct material of a HSI. The 72

latter almost always consists of mixed pixels, which are also af- 73

fected by noise spectra. Ideally, each endmember ought to have 74

the maximum possible abundance of a single physical material 75

present in the HSI under study and minimum (close to zero) 76

abundance for the rest of the physical materials. Moreover, the 77

determination of the number of endmembers is critical since an 78

underestimated number may result in poor representation of the 79

mixed HSI pixels under study, whereas an overestimated num- 80

ber may comprise a lot of mixed signatures. Popular endmember 81

extraction algorithms (EEAs) include VCA [12], N-FINDR vari- 82

ants [13], and MVSA [14]. Other related algorithms are discussed 83

in [16]–[18]. 84

The aim of AE is the decomposition of the spectral signa- 85

tures of mixed pixels into a selection of spectral signatures 86

1939-1404 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



IEE
E P

ro
of

2 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

corresponding to the reflectance of pure physical materials (end-87

members). The latter is usually extracted by the image itself via88

EE (however, in some cases they are selected from specific89

spectral libraries). AE results in a set of corresponding fractions90

(abundances), which indicate the proportion of each endmem-91

ber present in a given pixel. Clearly, the ultimate success of AE92

depends heavily on the appropriate selection of endmembers.93

Since only a small number of the available materials’ spectra94

are expected to be present in a HSI pixel (especially in high- res-95

olution HSIs), the abundance vectors are expected to be sparse.96

Clustering [19], [20] partitions a set of pixels from the input97

image into groups. Some of the most known clustering ap-98

proaches are the k-means [21], the Fuzzy C-Means (FCM) [22],99

the Possibilistic C-Means (PCM) [23] and their variants, e.g.,100

[24], [25]. The aforementioned algorithms are suitable for re-101

covering compact clusters and they use specific vectors, (called102

representatives) to represent the clusters that underlie in the103

current dataset. In contrast to these algorithms, that provide a104

single data clustering, in Hierarchical Agglomerative Clustering105

(HAC) [26], [27], the data are organized into an effective hier-106

archy of nested clusterings. HAC requires a metric in order to107

calculate the dissimilarity between pairs of pixels and a linkage108

so as to measure the dissimilarity between clusters.109

A. Related Work110

It should be mentioned that the literature on clustering tech-111

niques applied on HSIs is limited. In [28], a graph data struc-112

ture is generated to represent the tree crowns weighted with113

the Euclidean distance. A minimum spanning tree is generated114

using Kruskal’s algorithm and edges above a length threshold115

are removed to generate independent clusters. In [29], an unsu-116

pervised hierarchical cluster analysis to phytoplankton pigment117

data is applied with the aim of discriminating different phy-118

toplankton assemblages in open ocean environments. Several119

types of optical data vectors are used as input to HAC including120

objects consisting of reflectance values of hyperspectral data.121

Also, in [30], a new clustering algorithm, named Adaptive Pos-122

sibilistic C-Means (APCM), is applied on HSIs.123

In [31], a clustering procedure is proposed, which consists of124

three processes: 1) EE, 2) unmixing and 3) hardening process125

via the winner-takes-all approach, in order to produce recon-126

structed pixels spectra. In [32], the proposed work utilizes the127

Gauss Mixture Vector Quantization algorithm to learn the mix-128

ture analysis and explores the cluster analysis with correlation129

distance. In [33], SU is combined with k-means cluster analysis130

for accurate geological mapping. The data are first classified131

into two categories: hydrothermal alteration areas and unal-132

tered rocks. SU is applied to hydrothermal alteration areas and133

k-means clustering to unaltered rocks as two separate ap-134

proaches. In [34], the proposed work generates classification135

maps based on k-means clustering and Gradient Flow. SU is136

conducted using the Max-D algorithm to automatically find137

endmembers. It should be highlighted that, in all previous meth-138

ods, the unmixing and clustering processes are utilized as two139

separate steps, in the sense that their results are extracted inde-140

pendently from each other and are combined next.141

In this paper, a novel unsupervised SU-based clustering 142

method (SUBC) for HSIs is proposed. SUBC consists of two 143

processing stages namely: 1) SU, which consists of an EEA, 144

followed by a (sparse) AE algorithm and 2) a clustering algo- 145

rithm. The first process identifies suitable endmembers based 146

on the VCA algorithm [12]. Then, AE is applied on each image 147

pixel, in order to provide its abundance representation, using the 148

sparsity-promoting BiICE algorithm [35]. Finally, the recently 149

proposed APCM clustering algorithm [30] uses the abundance 150

representations of the pixels, in order to group them into clus- 151

ters. It should be noted that the abundance pixel representations 152

adopted in the proposed methodology ensures (in general) a 153

common sparsity pattern for pixels in the same cluster. To the 154

best of our knowledge, this is the first attempt of utilizing the 155

abundance representation of pixels generated by SU as input to 156

a clustering algorithm with the aim to enhance classification in 157

HSIs. 158

The proposed SUBC method is evaluated on a synthetic HSI 159

dataset as well as on three airborne HSI datasets of high-spatial 160

resolution (the agricultural area of Salinas Valley, CA, USA, the 161

land cover at Washington DC Mall, USA, and the urban area of 162

the Pavia center, Italy) and its performance is compared in terms 163

of overall accuracy (OA), average accuracy (AA) and kappa 164

coefficient with that of state-of-the-art clustering techniques. 165

The paper is organized as follows. Section II introduces the 166

proposed SUBC method. Section III demonstrates the results 167

obtained by the proposed method as well as comparisons with 168

state-of-the-art clustering algorithms. Conclusion and future re- 169

search directions are summarized in Section IV. 170

II. PROPOSED SUBC METHOD 171

In this section, we first present the motivation and contribu- 172

tion of this study and then we describe in detail the proposed 173

unmixing-based clustering algorithm. 174

A. Motivation and Contribution 175

In general, classification algorithms [36], [37] (both super- 176

vised and unsupervised) developed so far are applied directly on 177

the L-dimensional spectral band vectors of the pixels. However, 178

such (usually high dimensional) representations may contain a 179

lot of redundant information, which may cause pixels depicting 180

different areas to be not well separated from each other in the 181

L-dimensional spectral domain. Clearly, this renders the work 182

of the classification algorithms more difficult. Apart from the 183

above issue, most classification schemes used for HSI processing 184

do not focus on exploiting the available fine spectral resolution, 185

that is, they do not consider at all information within the pixel. A 186

further consequence of this is that such schemes do not exploit 187

the fact that each HSI pixel contains only a few of the materials 188

existing in the whole HSI (equivalently, the spectral signature of 189

each pixel is expected to result from the linear combination of 190

only a few endmember spectral signatures, which implies that 191

the corresponding abundance vectors will be sparse). 192

The approach that we adopt in this paper in order to leverage 193

the above issues is to employ sparsity-promoting SU techniques 194

in order to represent each pixel by its abundance vector (with 195
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Fig. 1. Conceptual illustration of the dimensionality reduction achieved, mov-
ing from the original band space (usually consisting of hundreds of spectral
bands) to the “less correlated” low-dimensional abundance space.

respect to a set of endmembers) and not by its spectral sig-196

nature. The rationale behind this choice is twofold. First, the197

dimension of the abundance vector space (which equals to the198

number of the endmembers depicted in the HSI under study) is199

usually much lower than the dimension of the spectral signature200

space (number of spectral bands) (see Fig. 1). Since the cor-201

responding original feature space (the space where each band202

defines an axis) is high dimensional, the Hughes phenomenon203

[38] (“curse” of dimensionality) appears. In light of this, the204

original high-dimensional space of the HSI is transformed to205

the dimensionally reduced space of abundance vectors [39].206

Second, assuming that the endmembers are pure pixels, the207

(sparse) abundance vectors are expected to form clusters, which208

are likely to lie in different subspaces in the abundance space. It209

is, thus, anticipated that different classes will form more easily210

distinguishable clusters in the abundance vectors space. Gener-211

ally speaking, adoption of the abundance representation is ex-212

pected to ease the work of the classification methods. However,213

we have to keep in mind that the abundance retrieval requires214

a very good estimation of the endmembers that have a physical215

meaning in order to work properly, which, in practice, is not216

straightforward.217

In the SU stage of the SUBC an EEA is first employed, which218

identifies appropriate endmembers of the image. Next, a sparse219

AE algorithm is used that is based on the endmembers extracted220

by the EEA, in order to produce the abundance fractions for221

each pixel, which in turn form the abundance vector of the222

pixel. These vectors of all pixels are fed to the second stage of223

the SUBC method, where a clustering algorithm groups pixels224

based on their abundance representations.225

An additional feature concerning the mapping to the abun-226

dance space that should be highlighted is that the number of227

clusters and the number of endmembers are (in general) dif-228

ferent. A cluster formed according to the abundances usually229

corresponds to a region where a single (or a few) endmembers230

have high proportion, whereas all other endmembers have low231

proportions. However, it can also correspond to the mixture of232

several endmembers of varied proportions. The block diagram233

of SUBC is depicted in Fig. 2.234

B. Spectral Unmixing235

1) Endmember Extraction: Aiming at detecting suitable236

endmembers, we utilize the VCA algorithm [12], which takes237

Fig. 2. Block diagram of SUBC.

as input the spectral signatures of the pixels, as can be seen in 238

Fig. 2. Each pixel can be viewed as a vector in an L-dimensional 239

Euclidean space, where each spectral band is assigned to one 240

axis of the space. Based on the aforesaid data points, the 241

VCA algorithm returns a prespecified number of endmembers 242

via iteratively projecting data onto a direction orthogonal to 243

the subspace spanned by the endmembers already determined. 244

The new endmember signature corresponds to the extreme 245

of the projection. The algorithm iterates until the number of 246

endmembers is exhausted [12]. Then, SUBC continues in esti- 247

mating the abundance fractions of each endmember via AE. 248

2) Abundance Estimation: The selection of appropriate end- 249

members is crucial so as to correctly estimate the abundance 250

fractions. Usually, the spectral signature of the pixel, denoted 251

by y, is assumed to follow the Linear Mixing Model [40] ac- 252

cording to which it can be expressed as a linear combination of 253

its endmembers’ spectra as follows: 254

y = Φx + n (1)

where Φ = [ϕ1 , ϕ2 , ..., ϕp ] ∈ �L×p
+ , L � p, is the mixing ma- 255

trix comprising the endmembers’ spectra (L-dimensional vec- 256

tors φi, i = 1, 2, ..., p), x is a p × 1 vector consisting of the 257

corresponding abundance fractions, named abundance vector, 258

and n is an L × 1 additive noise vector, which is assumed to be 259

a zero-mean Gaussian distributed random vector with indepen- 260

dent and identically distributed elements. 261

Due to the physical constraints of the unmixing problem, the 262

abundance fractions for each pixel should satisfy the following 263

two constraints: 264

xi ≥ 0, i = 1, 2, ..., N,
N∑

i=1

xi = 1 (2)

that is, the abundances should be nonnegative and they must 265

sum to 1. Furthermore, the abundance vector is expected to be 266

sparse, i.e., only a few of its elements will be nonzero, since the 267
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Fig. 3. (a) Class of the HSI containing two subclasses; (b) representation of
pixels in the original space; (c) representation of abundance vectors x = x1 , x2 ;
and (d) clustering result emerged from SUBC.

area depicted by a single pixel is likely to embed only a small268

fraction of the different materials encountered in the whole HSI.269

In this study, the abundance vector for each pixel is estimated270

via a variational Bayes algorithm called BiICE [35] (see Fig. 2)271

that imposes sparsity on the abundance vector and is based on272

an appropriately defined hierarchical Bayesian model. In algo-273

rithmic form, the abundance vector can be obtained as follows:274

x = BiICE(Φ, y). (3)

BiICE is computationally efficient, provides sparse solutions275

without requiring the fine-tuning of any parameters, and con-276

verges fast to accurate values even for highly correlated data.277

The determined abundance vectors x are further used for the278

representation of their associated pixels at the clustering pro-279

cess.280

In order to unravel the advantages of using the abundance281

representation of the pixels instead of the traditional band rep-282

resentation, we consider the following simplified case. For283

illustration purposes, we form an RGB image selecting three284

appropriate bands from a small area of one of the HSIs con-285

sidered in Section III-B. The considered area [see Fig. 3(a)] is286

a class consisting of two subclasses. The representation of the287

pixels in the original space is depicted in red color in Fig. 3(b).288

Assuming two endmembers (one from each subclass), Fig. 3(c)289

depicts the abundance vectors stemmed from BiICE in blue290

color. Note that, due to the imposed sparsity, almost all pixels291

are concentrated around the two axes. Finally, Fig. 3(d) depicts292

the classification map produced by SUBC.293

It should be highlighted that the pixels in the original space294

formulate one compact cloud with a few outliers and, thus, it295

is difficult to be naturally divided into two separate groups.296

On the contrary, the abundance vectors formulate two compact297

clouds tangent to the axes, which are highly distinguished. This298

is the advantage that characterizes the representation of the pix-299

els using their abundance vectors and eases SUBC to correctly300

identify the two subclasses, via its second stage. It should also301

be reminded here that the abundance vectors are characterized302

by sparsity (i.e., the existence of zeros in vectors x), which 303

promotes data distinctions. 304

C. Clustering 305

The clustering stage, which is applied on the abundance rep- 306

resentations of the HSI pixels under study, employs the APCM 307

algorithm [30] (see Fig. 2). Let X ={xi ∈ �p , i = 1, ..., N} 308

be a set of N p-dimensional data vectors to be clustered and 309

Θ = {θj ∈ �p , j = 1, ...,m} be a set of m vectors (called rep- 310

resentatives) that will be used for the representation of the clus- 311

ters formed by the points in X. Let U = [uij ], i = 1, ..., N, j = 312

1, ...,m be an N × m matrix whose (i, j) entry stands for the so- 313

called degree of compatibility of xi with the jth cluster denoted 314

by Cj and represented by the vector θj . The APCM algorithm 315

emerges from the optimization of the cost function of the origi- 316

nal PCM described as follows: 317

JPCM (Θ, U) =
m∑

j=1

[
N∑

i=1

uij ||xi − θj ||2

+ γj

N∑

i=1

(uij ln uij − uij )]. (4)

In contrast to the classical PCM, where γj
′s remain constant 318

during the execution of the algorithm, in APCM γj
′s are adapted 319

at each iteration through the adaptation of the corresponding 320

ηj
′s. This is achieved by setting γj = η̂

α ηj and adapting ηj 321

(which is a measure of the mean absolute deviation of the current 322

form of cluster Cj ) at each iteration of the algorithm. Note that 323

ηj
′s and α are constant quantities (for more details see [30]). 324

The output of the algorithm is a classification map consisting 325

of clusters formed based on the abundances produced in SU. The 326

clusters that are formed usually correspond to regions where 327

a few abundances have high values of fractions, whereas the 328

remaining ones exhibit low values (that is, they are aggregated 329

around certain subspaces in the abundance space). 330

III. EXPERIMENTAL RESULTS AND DISCUSSION 331

SUBC has been experimentally evaluated in four case studies: 332

a synthetic and three real airborne HSI datasets of high-spatial 333

resolution. The synthetic HSI dataset has been generated with 334

various values of additive noise in order to test the sensitivity 335

of the proposed method under different noise levels. The first 336

airborne HSI dataset represents a challenging area of various 337

plant species on an agricultural area, where discrimination be- 338

tween the species is impeded by numerous factors such as the 339

similar spectral signatures of the pixels as well as the absence of 340

reference spectra. The second airborne HSI dataset represents 341

a land cover of mixed vegetation and urban materials whose 342

spectral signatures patterns vary. The third airborne HSI dataset 343

represents a mainly urban area, where the spectral signatures of 344

the materials present are not characterized by specific patterns. 345

A. Synthetic HSI Dataset 346

The experimental evaluation of SUBC has been conducted on 347

a 100 × 100 synthetic HSI dataset consisting of five different 348
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Fig. 4. (a) Reference map of synthetic HSI dataset and (b) 100th band added
with noise at 20 dB.

Fig. 5. Estimated abundance maps for two endmembers (a) pyroxenes and
(b) carbonates extracted from synthetic HSI via BiICE. Abundance values range
from 0 (blue) to 1 (red).

regions artificially generated. The spectral signatures have been349

obtained by the U.S. Geological Survey Spectral Library [41].350

The data cube contains areas with mineral signatures of five351

general mineral classes: 1) olivines; 2) pyroxenes; 3) sulfates;352

4) oxides; and 5) carbonates. The HSI under study comprises 109353

spectral bands. For the generation of the synthetic hyperspectral354

data cube, seven endmembers have been randomly selected and355

for each mineral class seven pure pixels have been assigned.356

It should be highlighted that for each mineral class more than357

one endmembers have been randomly assigned. Each one of the358

five regions consists of a linear combination of different ran-359

domly selected different endmembers contaminated by additive360

Gaussian zero mean noise.361

Fig. 4(a) depicts the reference map, while Fig. 4(b) shows the362

100th band of the synthetic HSI contaminated by 20-dB addi-363

tive noise. It should be noted that noise is added in all bands of364

the synthetic HSI dataset and experiments have been conducted365

with different SNRs in the range of 20–40 dB. Fig. 5 illustrates366

abundance maps obtained from BiICE for two endmembers 1)367

pyroxenes and 2) carbonates extracted from the synthetic HSI368

under study. In Fig. 6, SUBC is compared with state-of-the-369

art clustering algorithms namely k-means, complete-link HAC,370

FCM, and APCM. It should be highlighted that all these al-371

gorithms are applied on the spectral signatures of the pixels,372

whereas the clustering procedure in SUBC is applied on the373

abundance representations of the pixels (due to the philosophy374

of the method). As shown in Fig. 6, classes 1, 3, and 4 are cor-375

rectly identified by all tested algorithms, while the superiority376

of the proposed SUBC algorithm is clearly demonstrated in the377

identification of classes 2 and 5.378

Table I contains the results obtained by k-means, HAC, FCM,379

APCM, and SUBC in terms of OA and kappa coefficient based380

Fig. 6. Clustering results emerged from: (a) k-means; (b) HAC; (c) FCM;
(d) APCM; and (e) SUBC on the synthetic HSI under study.

TABLE I
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON SYNTHETIC

HSI DATASET IN TERMS OF OA AND Kappa Coefficient

OA(%) kappa

k-means 86.95 0.76
HAC 93.51 0.87
FCM 90.01 0.89
APCM 97.73 0.90
SUBC 99.28 092

TABLE II
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON SYNTHETIC

HSI DATASET IN TERMS OF AA FOR EACH CLASS

Class k-means HAC FCM APCM SUBC

1 99.76 92.51 99.70 99.72 99.78
2 77.52 93.21 77.20 97.31 98.66
3 99.24 82.24 99.30 99.25 99.26
4 75.03 99.69 85.87 99.53 99.50
5 83.20 99.90 87.98 92.84 99.20

on the obtained confusion matrix for 20-dB SNR [33]. Table II 381

demonstrates the results in terms of AA (fraction of true positives 382

and true negatives) for each class. We observe that SUBC out- 383

performs all existing clustering techniques and offers an almost 384

100% OA and AA. It should be noted here that similar results 385

have also beenobtained for all other values of SNR tested in the 386

range 20–40 dB. 387

B. Airborne HSI Datasets 388

SUBC has been also experimentally evaluated on the HSI 389

airborne dataset of the Salinas Valley, CA, USA [42], which 390

constitutes an arduous clustering scenario. Salinas HSI has been 391

collected by the Airborne Visible Infra-Red Imaging Spec- 392

trometer (AVIRIS) sensor over an agricultural area of Salinas 393

Valley, California. The AVIRIS sensor, developed by NASA’s 394

Jet Propulsion Laboratory [43], generates calibrated radiance 395



IEE
E P

ro
of

6 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 7. (a) First PCA band; (b) 117th band of Salinas Valley; and (c) masked
reference map [42].

images in 224 contiguous spectral bands with wavelengths from396

400 to 2500 nm. Moreover, it is characterized by high-spatial397

resolution of 3.7-m pixels. The number of bands is reduced to398

204 by removing 20 water absorption bands. Salinas Valley HSI399

consists of vegetables and vineyard fields. Its masked reference400

classification map comprises eight classes: corn, two types of401

broccoli, four types of lettuce and grapes [42]. Fig. 7 depicts:402

(a) first PCA band; (b) 117th band; and (c) masked reference403

map of a 150 × 150 subimage of the Salinas Valley HSI.404

Ideally, one would have a digital spectral library of refer-405

ence spectra of the mapped plant species. However, such a406

publicly available library does not exist for the specific plant407

species. In addition, it is not known how many spectra would408

be required to represent the changing spectral signatures, as409

a function of the growing season. This unavoidably leads to410

the selection of the endmembers from the image itself. Doing411

so, Fig. 8(a)–(d) depict estimated abundance maps stemmed412

from BiICE for four endmembers extracted from Salinas Val-413

ley HSI. Fig. 8(a) and (b) correspond to two types of broccoli,414

Fig. 8(c) to one type of grapes and Fig. 8(d) to a (most probably)415

construction.416

Aiming at a quantitative evaluation, SUBC is compared417

against k-means, HAC, FCM, and APCM in terms of OA and AA418

computed by the obtained confusion matrix as can be seen in Ta-419

bles III and IV, respectively. We see from Tables III and IV that420

SUBC achieves OA, kappa, and AA values which are higher than421

that of the other state-of-the-art clustering algorithms. Fig. 9 il-422

lustrates clustering results emerged from: (a) k-means; (b) HAC;423

(c) FCM; (d) APCM; and (c) SUBC on the Salinas HSI dataset.424

It should be mentioned that the results obtained by APCM and425

SUBC demonstrate the correct identification of all classes and426

subclasses as can be seen by examining the first PCA band in427

Fig 7(a).428

Fig. 8. Estimated abundance maps for four endmembers extracted from
Salinas Valley HSI via BiICE. Abundance values range from 0 (blue) to 1
(red).

TABLE III
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON SALINAS

HSI DATASET IN TERMS OF OA AND Kappa Coefficient

OA(%) kappa

k-means 72.67 0.70
HAC 87.07 0.75
FCM 82.46 0.70
APCM 91.34 0.78
SUBC 93.04 0.80

TABLE IV
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON SALINAS HSI

DATASET IN TERMS OF AA FOR EACH CLASS

Class k-means HAC FCM APCM SUBC

Grapes 73.67 94.27 74.92 87.92 94.77
Broccoli A 74.43 73.82 92.83 92.79 93.49
Broccoli B 73.56 73.93 90.12 90.82 91.52
Lettuce A 72.43 89.38 72.81 92.27 93.37
Lettuce B 73.21 91.59 70.62 91.39 92.36
Lettuce C 70.23 92.72 91.29 92.12 92.79
Lettuce D 71.54 93.91 92.46 93.24 93.52
Corn 72.29 86.94 74.63 90.17 92.50

SUBC has also been quantitatively evaluated on the HSI air- 429

borne dataset of the Pavia Center [42]. The image has been 430

acquired by the reflective optics system imaging spectrometer 431

sensor over an urban area of the city center. The flight was 432

operated by the German Aerospace Agency under the HySens 433

project managed by the German Aerospace Center (DLR). The 434

original data consist of 115 spectral bands (with the spectral 435

range from 0.43 to 0.86 μm) and has a high-spatial resolution of 436

1.3 m. However, noisy bands were previously removed leading 437

to a total of 102 bands. Four thematic classes are present in the 438
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Fig. 9. Clustering results emerged from: (a) k-means; (b) HAC; (c) FCM;
(d) APCM; and (e) SUBC on the Salinas HSI.

Fig. 10. (a) First PCA band; (b) 80th band of Pavia center; and (c) masked
reference map [42] (1-yellow, 2-light blue, 3-dark blue, and 4-brown).

scene: 1) asphalt; 2) meadows; 3) trees; and 4) shadows, accord-439

ing to the reference classification map provided by [42]. Fig. 10440

depicts: (a) first PCA band; (b) 80th band; and 3) masked refer-441

ence map of a 300 × 177 subimage of the Pavia center HSI [42].442

Fig. 11(a) and (b) depicts estimated abundance maps stemmed443

from BiICE for two endmembers: (a) shadow and (b) manmade444

material.445

In the scope of a quantitative evaluation, SUBC is compared446

against k-means, HAC, FCM, and APCM in terms of the OA and447

kappa coefficient computed by the obtained confusion matrix448

Fig. 11. Estimated abundance maps for two endmembers (a) shadow,
(b) manmade material extracted from Pavia center HSI via BiICE. Abundance
values range from 0 (blue) to 1 (red).

TABLE V
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON PAVIA HSI

DATASET IN TERMS OF OA AND Kappa Coefficient

OA(%) Kappa

k-means 93.26 0.80
HAC 37.03 0.71
FCM 92.46 0.78
APCM 93.38 0.79
SUBC 96.30 0.83

TABLE VI
COMPARATIVE RESULTS OF CLUSTERING ALGORITHMS ON PAVIA HSI

DATASET IN TERMS OF AA FOR EACH CLASS

Class k-means HAC FCM APCM SUBC

Asphalt 94.28 25.93 94.90 95.01 97.31
Meadows 90.62 16.72 92.61 91.68 96.71
Trees 92.25 21.09 86.51 90.47 94.37
Shadows 95.89 84.39 95.82 96.36 96.81

as can be seen in Table V and in terms of the AA as can be 449

seen in Table VI, while the clustering results of all algorithms 450

are shown in Fig. 12. Again, SUBC provides the best clustering 451

performance as witnessed by its OA, kappa, and AA values, 452

which are the highest among all its competitors. 453

Finally, SUBC has been qualitatively evaluated on the HSI 454

airborne dataset of the Washington DC mall [44]. The image 455

has been acquired by the airborne mounted Hyperspectral Dig- 456

ital Imagery Collection Experiment sensor. The sensor system 457

used in this case measured pixel response in 210 bands in the 458

0.4–2.4 μm region of the visible and infrared spectrum. Bands 459

in the 0.9–1.4 μm region, where the atmosphere is opaque, have 460

been omitted from the dataset leaving 191 bands. Moreover, 461

the dataset exhibits high-spatial resolution (2.8 m). Five the- 462

matic land cover classes are present in the scene: 1) roof; 2) Q3463

grass; 3) trees; 4) water; and 5) asphalt road, according to the 464
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Fig. 12. Clustering results emerged from: (a) k-means, (b) HAC, (c) FCM,
(d) APCM and (e) SUBC on the Pavia center HSI.

Fig. 13. (a) First PCA band; (b) 100th band of Washington DC; and
(c) reference map [44].

classification map provided by [49] and used here as a reference465

map.466

Fig. 13 depicts: (a) first PCA band; (b) 100th band; and (c)467

reference map of a 100 × 100 subimage of the Washington DC468

mall HSI [44]. It should be noticed that the reference map is469

provided only for qualitative visualization assessment and it is470

not accurate for a thorough quantitative assessment. Fig. 14(a)471

Fig. 14. Estimated abundance maps for two endmembers: (a) manmade ma-
terial and(b) (most probably) soil/grass of class 1 extracted from Washington
DC HSI via BiICE. Abundance values range from 0 (blue) to 1 (red).

Fig. 15. Clustering results emerged from: (a) k-means; (b) HAC; (c) FCM;
(d) APCM; and (e) SUBC on the Washington DC HSI.

and (b) depicts estimated abundance maps stemmed from Bi- 472

ICE for two endmembers: 1) manmade material and 2) (most 473

probably) soil/grass of class 1. Fig. 15 illustrates clustering re- 474

sults emerged from: (a) k-means; (b) HAC; (c) FCM; (d) APCM; 475

and (e) SUBC on the Washington DC HSI dataset. It should be 476

highlighted that, apart from SUBC, all other algorithms falsely 477

classify water and asphalt road pixels to one class. On the other 478

hand, SUBC correctly distinguishes pixels that belong to the 479

water class from all other pixels that belong to the remaining 480

classes. 481

As it has been highlighted throughout the paper, the key idea 482

of the proposed method is to perform unmixing at its first stage, 483

in order to take the abundance representations of the pixels 484

and then, at the second stage, to perform clustering based on 485

the pixels abundance vector representations. Clearly, one could 486

choose any unmixing method in the first stage and any clustering 487

method in the second stage of the algorithm. In order to justify 488

the choice of BiICE in the first stage, we compare it against 489

two AE algorithms: 1) a quadratic programming (QP) technique 490

[45], which does not exploit sparsity and 2) the sparse unmix- 491

ing by variable splitting and augmented Lagrangian (SUnSAL) 492

algorithm [46], which, as BiICE, imposes sparsity. That is, we 493

substitute BiICE with QP and SUnSAL at the first stage of the 494

proposed method. Leaned on Table VII, which depicts the OA 495
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TABLE VII
COMPARATIVE RESULTS OF SU ALGORITHMS ON HSI

DATASETS IN TERMS OF OA

Synthetic Salinas Pavia

QP 83.67 74.32 71.20
SUnSAL 97.50 82.71 87.52
BiICE 99.28 93.04 96.30

of the three cases, the QP algorithm attains the worst perfor-496

mance (since it does not take into account that by the nature of497

the problem, the abundance vectors exhibit sparsity), whereas498

SUnSAL exhibits significantly improved performance compared499

to QP, yet inferior, compared to BiICE, especially for real data.500

Moreover, SUnSAL comes at the additional expense of manually501

fine-tuning nontrivial parameters, such as a sparsity promoting502

parameter λ.503

The choice of APCM in the second stage of the algorithm is504

justified mainly by the fact that it is able to estimate automati-505

cally the underlying number of clusters in the dataset. Moreover,506

focusing on the first four lines of Tables I, III, and IV, the OA507

of APCM is significantly higher from all other state of the art508

clustering methods (note that all these algorithms are applied on509

the same dataset, i.e., the spectral signature representations of510

the HSI pixels).511

IV. CONCLUSION AND FUTURE DIRECTIONS512

The key challenge of the proposed method (SUBC) is the iden-513

tification of spatially homogeneous regions comprising different514

materials. The method consists of two main stages (unmixing515

and clustering) and generates three significant (by)products,516

namely: 1) endmembers; 2) abundance vectors (abundance517

maps); and 3) clusters (classification maps). The key feature of518

SUBC is the utilization of the abundance representations of the519

HSI pixels (as they result from the unmixing stage) in the cluster-520

ing stage. The advantage of using the abundance representation521

instead of the basic spectral representation of the pixels is that522

the former, in contrast to the latter, provides subpixel level infor-523

mation, which in turn favors more detailed classification maps.524

Moreover, the abundance representation is likely to give rise to525

more well-discriminated clusters that live on subspaces of the526

abundance space, due to the fact that only a few materials are527

expected to contribute to the formation of a HSI pixel (sparsity528

issue). As a consequence, subspace clustering algorithms could529

also be considered as an alternative in the final stage of the algo-530

rithm, since the abundance representations are likely to lead to531

clusters that live to subspaces of the abundance space. SUBC is532

unsupervised and does not require class information knowledge533

of the dataset under study. Moreover, it is image independent,534

it alleviates the “curse of dimensionality” issue and enhances535

localization and accuracy since it operates in the subpixel level536

of information. However, it is noted again that the correct iden-537

tification of the endmembers number and their correspondence538

to physical objects/materials is undoubtedly the most critical539

step for successful SU and, as a consequence, for the clustering 540

processes. 541

Experimental results show that SUBC compares favorably to 542

other related methods. This gives us confidence to claim that the 543

performance of the proposed method remains consistent with 544

high-spatial resolution airborne data. It is capable of identifying 545

compact regions and spectral regions that lack training data. 546

In terms of future directions, the full potential of this al- 547

gorithm will be investigated with additional hyperspectral ac- 548

quisitions of higher mixture complexity. In addition, this study 549

could be reinforced and expanded in the case of existing and 550

future satellite hypespectral data imagery of lower spatial res- 551

olutions where increased complexity issues for the tasks of 1) 552

endmember identification; 2) resolving shadowing effects; and 553

3) facing oblique viewing and illumination angles arise. More- 554

over, subspace clustering algorithms could be utilized, since as 555

we discussed earlier, they suit nicely in the nature of the problem 556

in the abundance space. 557
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