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ABSTRACT

Compressed Sensing (CS) is a novel mathematical framework that has revolutionized modern signal and image
acquisition architectures ranging from one-pixel cameras, to range imaging and medical ultrasound imaging.
According to CS, a sparse signal, or a signal that can be sparsely represented in an appropriate collection of
elementary examples, can be recovered from a small number of random linear measurements. However, real
life systems may introduce non-linearities in the encoding in order to achieve a particular goal. Quantization
of the acquired measurements is an example of such a non-linearity introduced in order to reduce storage and
communications requirements. In this work, we consider the case of scalar quantization of CS measurements
and propose a novel recovery mechanism that enforces the constraints associated with the quantization processes
during recovery. The proposed recovery mechanism, termed Quantized Orthogonal Matching Pursuit (Q-OMP)
is based on a modification of the OMP greedy sparsity seeking algorithm where the process of quantization is
explicit considered during decoding. Simulation results on the recovery of images acquired by a CS approach
reveal that the modified framework is able to achieve significantly higher reconstruction performance compared
to its naive counterpart under a wide range of sampling rates and sensing parameters, at a minimum cost in
computational complexity.
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1. INTRODUCTION

Compressed Sensing (CS)1,2 is a novel mathematical framework that has revolutionized modern signal and image
acquisition architectures ranging from Single Pixel Cameras3 and CS based spectral imaging4 , to range sensing5

and Ultrasound imaging6 . In imaging scenarios where hard constrains are imposed, including spatial, temporal
and spectral resolution, power consumption, and robustness, CS based architectures outperform traditional
approaches, both from a theoretical as well as a practical standpoint. However, despite their clear superiority
as a sensing paradigm, the success of CS as an end-to-end sensing and encoding strategy has been hindered
by various actors, including the effects of signal quantization. In practice, quantization is imposed by the real-
life requirement that acquired signals have to be represented using a finite collection of codewords in order to
transform the real valued measurements to binary vectors. Such binary represented measurements can then be
stored and transmitted before a decoder employs a recovery algorithm.

Most of the effort involved around CS has been primarily focused on identifying the scenarios where a
sufficiently large number of randomly encoded measurements are available at the decoder for signal reconstruc-
tion. Unfortunately, issues related to the performance of CS in the presence of quantization have hampered
the widespread adoption of CS as a valid, generic, compression scheme. The key issue lays in the many-to-one
mapping of quantization, which dictates that signal encoding is lossy even if sufficient measurements are ac-
quired.7 The non-linear nature of quantization leads to a complex interaction with CS recovery where one must
address the tradeoff between number of measurements that must be acquired and the number of bits that will
be allocated for representing them.

The problem has been predominantly studied in light of two scenarios, high resolution analysis8,9 and 1-bit
CS10,11 . In the former case, the distance between consecutive quantization thresholds is small compared to
the dynamic range of the signal, thus allowing the modeling of quantization as a noise source12 . Under this
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modelling assumption, signal approximation is constrained by the quantization-equivalent noise and recovery
follows the same mentality as the case of recovery from noisy measurements. In the other extreme, 1-bit CS
corresponds to the case of severe quantization where only the sign of each measurement is maintained. The
motivation behind the employment of such extreme quantizers lays in the assumption that modern analog-to-
digital converters are congested by the quantization process, leading to lower effective sampling rates, while
utilizing high resolution quantizers can cause higher power consumption. A novel line of research regarding the
interaction of quantization and CS sampling and reconstruction aims are producing a new generation of recovery
algorithms that consider the effects of quantization during the signal estimation process. A prominent example
of this direction is the quantized iterative hard thresholding algorithm13 , which is a modified version of the well
known iterative hard thresholding algorithm and has shown very good performance in generic signal recovery
from quantized CS measurements14 .

In this work we propose a novel recovery mechanism for recovering images from quantized CS measurements.
Such an imaging architecture can be either supported by the appropriate hardware infrastructure or be employed
by an encoder as a generic image compression scheme. Recovery is driven by a novel sparse reconstruction
scheme, termed Quantized Orthogonal Matching Pursuit (Q-OMP) which is an extension of the Orthogonal
Matching Pursuit (OMP) algorithm for signal recovery from compressed measurements. The reconstruction
capabilities of Q-OMP are attributed to both the estimation capacity of OMP and the introduction of the
concept of quantization consistency during the recovery process. As a result, our scheme can achieve superior
image recovery performance, in a wide range of quantization settings, outperforming the recovery of standard
OMP, at a minimal increase in recovery complexity.

2. CS BASED IMAGING

The theory of CS15 suggests that one can achieve perfect reconstruction of a signal x P RN from a small number
of random measurements y P RM , far below the typical Shannon-Nyquist sampling limit, provided certain
conditions are met. Formally, instead of directly sampling the signal x, in CS one acquires a low-dimensional
representation y � Ψx P RM , where Ψ is the M�N sensing (or measurements) matrix with M    N . Recovery
from the compressed measurements y is possible by exploiting the sparsity of the signal, either in the original
domain, or when the signal is expressed in an appropriate dictionary D P RM�J according to x � Ds, where J
is the number of atoms in the dictionary and s P RJ is the representation coefficients vector. The full resolution
signal can be recovered from the low dimensional embedding by solving a regularized optimization problem where
the sparsity of the signal, measured by the l0 non-zero counting pseudo norm is minimized subject to fidelity
conditions:

min ||s||0 subject to y � ΨDs (1)

A natural variation of this scheme allows for the approximate recovery of the signal by incorporating an error
tolerance ε, in which case the optimization in Eq. (1) is given by:

min ||s||0 subject to }y �ΨDs} ¤ ε (2)

An important issue regarding the formulation in Eq.(1) and Eq.(2) is that the l0 minimization is an NP-hard
problem and therefore inefficient to solve for even moderate sized problems.

To address this issue, greedy approaches such as the OMP16 algorithm have been proposed. OMP greedily
tries to identify the elements that contain most of the signal energy by iteratively selecting the dictionary element
that best matches the signal and estimating the residual error by projecting the input signal to the linear span
of the selected elements, until the residual error is within an acceptable approximation limit. Alternately, the
CS theory suggests that for sufficiently sparse signals and for measurements matrices whose elements are drawn
from appropriate distributions that satisfy the RIP property17 , reconstructing the original signal s from the
measurements y can be achieved by replacing the l0 norm with the more tractable l1 norm, defined as the sum
of the absolutes values of the vector elements.

The sensing matrix plays a key role in the ability to recover sparse signal from CS measurements. In
general, the deterministic construction of a universally optimal sensing matrix is a formidable task, that has
been intensively investigated by the research community18,19 . Fortunately, the theory of CS has shown that



recovery is possible when the entries of the sensing matrix are randomly drown from an appropriate distribution,
two of the most prominent ones being the Gaussian and the Binary. While the former offers stronger theoretical
guarantees, the latter is more attractive from an implementation perspective.

3. QUANTIZATION OF CS MEASUREMENTS

A scalar quantization process is defined by an ordered set of thresholds T � tt1, ..tB |ti   tj ,@i, ju, generating
a codebook C containing |C| � B � 2R codewords. Typically each codeword corresponds to the value in the
middle between two consecutive thresholds. Each acquired measurement y is represented by the closest codeword
such that Qpyq � mincPC }c � y}2. After quantization, the acquired signal is given by ŷ � QBpyq, where the
nonlinear operator Q : RÑ 2R models the process of mapping the set of real numbers to a set of specific elements
indexed by R bits. As a consequence of the quantization, the measurements are compactly represented, requiring
a total bit budget equal to RM . The most straightforward allocation of the bit budget is the uniform scalar
quantization.

In the uniform scalar quantization, for a given bit resolution B per measurement, the quantizer thresholds the
real line uniformly such that |ti� tj | � ∆ for signals with bounded magnitude between t1 and tB . Values outsize
the bounds are saturated and get truncated to the limiting bins. The output of a uniform scalar quantizer for an

input uniformly distributed signal x is given by Qpxq � sgnpxq �∆ � t |x|∆ � 0.5u where sgn is the sign function.20

In addition to the non-linear mapping of measurements, uniform scalar quantization also imposes constrains on
the magnitude of the measurements by saturating values outside the predefined region.

While the uniform scalar quantization is a computational efficient approach, which works for any signal
with bounded magnitude, the under-utilization of prior knowledge may lead to inefficient designs. Due to
the importance of the allocation of this bit budget, different approaches have been presented. A more efficient
quantization approach is the non-uniform scalar quantizer which is based on the Lloyd-Max optimal quantization
approach21,22 . Unlike the uniform scalar quantization, in optimal scalar quantization one assumes knowledge
of statistical properties of the signals under investigation extracted from training examples. These examples
are employed in a iterative optimization approach that searches for the partition scheme that minimizes the
representation error of the training samples.

In order to account for the effect of quantization, we propose a novel formulation of OMP based recovery.
Formally, we consider the non-linear mapping function of the sparse signal s given by Qps; GDq � QpGDsq. In
this case, the recovery program in Eq.(2) can be expressed according to:

min }s}0 subject to }ŷ �Qpsq}2 ¤ ε . (3)

Recovery in the presence of the non-linear function Q can be achieved by solving a modified version of the
greedy OMP approach, with additional constraints on the consistency of the recovered signal with respect
to its quantized counterpart. The algorithmic steps of the proposed Quantized OMP (Q-OMP) is presented in
Algorithm 1. Q-OMP, much like OMP, is an iterative process where in each iteration the algorithm first performs
support identification by selecting the dictionary element that best matches (in an l2 norm) the residual and
then updates the residual error.

For the case of uniform scalar quantization, the approximation error can be bounded by the quantization
equivalent noise, while in the case of the optimal quantization the error is related to the statistics of the input
signals. With respect to the typical OMP, Q-OMP imposes a small increase in computational complexity due
to the introduction of the quantization of the estimates. However, this increase is associated with a significantly
more robust behavior compared to OMP as we will see in the next section.

4. EXPERIMENTAL RESULTS

In our system model, we follow a block coding approach where groups of pixels, 8�8 in our case, are multiplexed
by a specific sampling pattern φi producing a single measurement yi for that group. The process is simultaneously
applied to all non-overlapping groups of image pixels and repeated with different sensing matrices in order to
acquire a number of measurements. Since images are not naturally sparse signal, one has to resort to the use of



Algorithm 1: Quantized Orthogonal Matching Pursuit (Q-OMP)

Input: The measurements y,
The sensing matrix Φ,
The dictionary of examples D,
The error tolerance threshold and/or maximum number of iterations k.

Output: The sparse representation coefficients ŝ.

1: initialization T 0 � H, r0 � y
2: while error ¥ threshold or k ¤ iterationslimit do
3: T k � T k�1 Y arg maxj |Qp  rk�1, pΦDqj ¡q|.
4: ŝTk � arg mins }y �QppΦDTkqsq}2.
5: rk � y �ΦTk ŝTk .
6: set k ÐÝ k � 1
7: end while

a dictionary that can sparsely represent such signals. Although a large number of presentation basis have been
proposed, ranging from wavelet-like basis to learned dictionaries, we consider the Discrete Cosine Transform
(DCT) in our experiential section, motivated by the extremely wide use of DCT as a image transform in the
JPEG image compression algorithm. To compare the performance of each method, we consider the PSNR of
the full 8 bits recovered images as the error metric. The training of the quantizers and the testing on the
reconstruction was performed on disjoint sets of grayscale versions of benchmark images�. We consider two cases
where we employ either a binary sensing matrix or a Gaussian one. For the former case, we consider binary
matrices where ppΦi,j � 1q � 0.5 and for the former case we consider zero mean Gaussian distributions with
variance 1{M23 .

In the first set of experiments, we considered the uniform scalar quantization with saturation of measurements
acquired with normalized Gaussian and Binary sensing matrices. Figure 1 presents the recovery performance
with Gaussian sensing matrices at (a) 4 bits and (c) 2 bits per measurement and from Binary sensing matrices at
(b) 4 bits and (d) 2 bits per measurement. Examining all four cases presented in Figure 1, we observe that the
ordering of the algorithms with respect to performance is maintained accross sensing schemes and quantization
resolutions, however, reconstruction quality is significantly affected by quantization. More specifically, one can
notice there is always a significant performance reduction when the reconstruction algorithm is presented with
the full resolution measurements (labeled unquantized) versus the quantized ones (labeled OMP). Furthermore,
this performance gap is not constant but increases at higher sampling rates. In the moderate quantization
of 4 bits per measurement, the reconstruction quality is monotonically increased at increasing sampling rates,
following the monotonic increase in reconstruction quality observed in the unquantized case, yet, achieving a
lower performance bound. However, in the higher compression case of 2 bits per measurement, the recovery of
OMP in the presence of quantization appears to deteriorate at higher sampling rates. This phenomenon can
be attributed to the fact that increasing the number of measurements, leads to higher dynamic range of values,
which in the cases of extreme quantization such as the 2 bit per sample, causes the quantization equivalent
noise to out-power the underlying true signal power. Regarding the recovery under the two sensing schemes,
namely the Gaussian and the Binary, the theoretical assumptions regarding encoding capabilities are manifested
in the experimental results, where recovery from Gaussian based measurements always achieves higher quality
compared to recovery from the Binary ones.

Focusing on the comparative performance of OMP and Q-OMP reconstruction, simulation results indicate
that Q-OMP is more robust to the quantization effects, typically achieving monotonic increase at higher sampling
rates. In the 4 bits per sample case, we observe that both OMP and Q-OMP exhibit similar performance up to
around 20 measurements, while Q-OMP is better at higher sampling rates. In the challenging case of 2 bits per
measurement, there is a significant difference between the reconstruction of Gaussian sensed verses Binary sensed
measurements, where in the Binary case, Q-OMP achieves almost 10dB gain in performance at high sampling
rates. Furthermore, while OMP’s performance in the Binary 2 bit case is extremely poor, leading to situations

�http://sipi.usc.edu/database/
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Figure 1: Recovery of compressible signals from unquantized and uniformly quantized measurements by employ-
ing the traditional OMP and the Quantization aware OMP (Q-OMP). We consider Gaussian (left column) and
Binary (right column) sensing matrices and uniform scalar quantization with quantization at (a,b) 4 bits and
(c,d) 2 bits per measurement.

where the noise out-powers the true signal, Q-OMP maintains a stable performance across sampling rates. Note
that even in the scenario of extreme quantization where increasing the sampling rate without increasing the
encoding resolution leads to worse performance for typical recovery approaches, the proposed Q-OMP algorithm
is able to maintain a non-decreasing performance.

In the second groups of experiments, we consider the recovery performance when an optimal scalar quantizer
is employed. Figure 2 presents the four cases regarding bit resolution and sensing matrices as Figure 1, however
the quantization thresholds are found by the Lloyd-Max algorithm. Comparing the overall performance between
the uniform and the optimal quantization, we observe that recovery is better for both OMP and Q-OMP in
the optimal quantization case, as it would be expected. More specifically, OMP in the 4 bits per measurement
achieves up to 5 dB increase in recovery performance from Gaussian measurements by going from uniform
to optimal quantization, while little performance gain is observed for the binary measurements. In the 2 bit
per measurement case, again there is a noticeable increase in performance for Gaussian measurements while
for Binary sensing, actually increasing the sampling rate lead to performance drop due to the increase in the
dynamic range of measurements.

The performance of Q-OMP in the 4 bits per measurement case when an optimal quantization is employed



6 12 18 24 30 36 42 48 54
5

10

15

20

25

30

Number of measurements

P
S

N
R

 (
dB

)

Lloyd−Max Quantization with Gaussian Sensing Matrix (4 bps)

 

 

Unquantized
Q−OMP reconstruction
OMP reconstruction

(a)

6 12 18 24 30 36 42 48 54
5

10

15

20

25

30

Number of measurements

P
S

N
R

 (
dB

)

Lloyd−Max Quantization with Binary Sensing Matrix (4 bps)

 

 

Unquantized
Q−OMP reconstruction
OMP reconstruction

(b)

6 12 18 24 30 36 42 48 54
0

5

10

15

20

25

30

Number of measurements

P
S

N
R

 (
dB

)

Lloyd−Max Quantization with Gaussian Sensing Matrix (2 bps)

 

 

Unquantized
Q−OMP reconstruction
OMP reconstruction

(c)

6 12 18 24 30 36 42 48 54
0

5

10

15

20

25

30

Number of measurements

P
S

N
R

 (
dB

)

Lloyd−Max Quantization with Binary Sensing Matrix (2 bps)

 

 

Unquantized
Q−OMP reconstruction
OMP reconstruction

(d)

Figure 2: Recovery of compressible signals from unquantized and optimally quantized measurements by employ-
ing the traditional OMP and the Quantization aware OMP (Q-OMP). We consider Gaussian (left column) and
a Binary (right column) sensing matrices and uniform scalar quantization with quantization step equal to 0.01
(a and b), 0.1 (c and d) and 0.2 (e and f).

follows the same behavior as OMP, i.e significant performance increase in for Gaussian sensing matrices and
marginal for Binary. The gain observed for 4 bits per measurement in the Gaussian case is transfer to the 2 bit
case, where unlike OMP, the performance of Q-OMP is comparable to the 4 bits per measurement of uniform
quantization. Even in the challenging case of Binary sensing at 2 bits per measurement, the performance of
Q-OMP is non decreasing.

Drowning some conclusion from both experimental setups, results suggest that although Binary sensing ma-
trices are more implementation friendly, they cannot achieve the recovery performance when Gaussian sensing
matrices are employed. In the case of extreme quantization (2 bits per measurement), the noise introduced
by qunatization can even lead to performance drop for Binary sensing matrices at higher sampling rates. Re-
garding recovery capabilities, Q-OMP outperforms OMP is all cases achieving performance comparable to the
unquantized case at low sampling rates.

To understand how recovery error is translated to visual artifacts, we present an example of images recov-
ered from the typical and the proposed scheme in a scenario where an optimal scalar quantizer at 4 bits per
measurement was employed in conjunction with a Gaussian sensing matrix which collected 32 measurements in



total. One easily observes that even in the case of unquantized measurements, a realistic scenario such as the one
discussed here significantly hinders the recovery capabilities. However, although the recovered image exhibits
strong signs of blocking effects, a significant portion of details has been recovered. With further processing steps
including the application of a de-blocking algorithm, the quality of the final image can be dramatically increased.
Regarding the performance of recovery in the quantized measurements case (c), the image exhibit a considerable
amount of complex structured noise. As a consequence, we observe that both low as well as high frequency
details are lost due to white nature of quantization. The quantization aware Q-OMP achieves a better visual
quality than OMP, sharing an important range of image features with the unquantized case.

Original Image

(a)

OMP recovery form Unquantized measurements (15.634673 dB)

(b)OMP recovery form Quantized measurements (14.457670 dB)

(c)

Q−OMP recovery form Quantized measurements (15.868965 dB)

(d)

Figure 3: Illustration of (a) original and recovered images with (b) OMP from original measurements, (c) OMP
from quantized measurements and (d) Q-OMP from quantized measurements, from 32 measurements obtained
with Gaussian sensing matrices, quantized at 4 bits per measurements with the Lloyd-Max quantization. The
PSNR achieved by the methods are (b) 15.6 dB, (c) 14.4 dB and (d) 15.8 dB.



5. DISCUSSION

While the concept of CS has been introduced in numerous imaging architectures, quantization of compressibly
sampled measurements is a necessary evil associated with real-life systems that has limited to adoption of
CS as an end-to-end image acquisition and storage scheme. In this work, we investigate the effects of scalar
quantization on images either captured by a CS architectures or encoded using a CS based image compression
scheme. Simulation results verify the assumption that indeed quantization can significantly reduce the recovery
capabilities of standard recovery algorithms such as the OMP. To address this issues, we propose a modified
reconstruction algorithm, the Q-OMP, which considers the quantization process during the iterative recovery
steps. By introducing the quantization consistency constraint, a significant portion of the reconstruction error
is adsorbed by the proposed recovery algorithm, outperforming the typically approach under all scenarios under
investigation.
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